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Abstract: Soil contains a diverse fauna and microflora that are vital for maintaining healthy soils
and their various ecosystem services. Oribatid mites are typically highly abundant arthropods in
the soil and are used as indicators for environmental monitoring. The aim of this study was to
determine oribatid mite community response to natural land cover, anthropogenic disturbance,
space, and climate in the oil sands region of Alberta, Canada. Our results found that oribatid mite
total abundance was significantly reduced by mining, cultivation, and well sites. Species richness
was significantly reduced by mining and cultivation. Shannon’s diversity index was significantly
higher for all natural land cover types, seismic lines, and forest harvest. Additionally, species
diversity was lower under the relative influence of energy-related soft linear disturbances than
for naturally vegetated sites and forest harvesting, and was lowered further by anthropogenic
disturbances with more impact on soil integrity (cultivation, mines, urban/industrial, road/trail
verges, well sites). Abundance, richness, and diversity also increased with increased frost free
period and with eastward longitude. Mite community composition included a notable composition
difference between lowland habitats and upland forest types, and between natural land cover and
intense anthropogenic disturbance types (e.g., mines, cultivation). Our study highlighted oribatid
mite communities’ response to natural land cover, anthropogenic disturbance and spatial–climatic
factors assessed over broad spatial scales and the potential utility of oribatid mites as ecosystem
health indicators under multiple ecological drivers.

Keywords: Acari; biodiversity; environmental monitoring; indicator species; mesofauna; microarthropod;
oil sands; Oribatida; soil health; soil quality

1. Introduction

Soil biodiversity drives ecological processes associated with soil formation and func-
tioning that are intimately linked to various ecosystem services by soils, including food
security, ecological resilience, carbon sequestration, air and water purification, and climate
regulation [1–5]. The provisions of these ecosystem services are linked to the wide range
of activities undertaken by the enormous diversity of soil organisms adapted to different
habitats and environmental conditions [1]. For example, soil organisms form complex food
webs that promote nutrient cycling through the breakdown and decomposition of organic
materials [6,7]. As a result, the abundance and diversity of belowground soil biota play
vital roles in both above- and belowground nutrient availability, which are linked to many
essential ecological processes such as primary productivity [6–9]. Thus, intact soil food
webs are critically linked to both above- and belowground ecosystem productivity and
function [5,8]. The recognition of soil biodiversity as vital for healthy ecosystem functioning
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has placed it at the heart of international policy frameworks, including the United Nation’s
Sustainable Development Goals [5].

Many human activities result in soil degradation, which has negative consequences
for soil biodiversity [2,10]. Energy-related disturbances such as well sites and seismic
lines have significant impact on soil structure, including compaction, reduced porosity,
and increased bulk density, which in turn impact above- and belowground vegetation
structure and function [11–13]. In addition, salvaging and long-term stockpiling of soil for
post-mining reclamation purposes can modify nutrient availability and create anaerobic
conditions that reduce the survival of soil organisms [14,15]. These changes decrease the
available space and food for soil organisms and can also affect other soil properties that
soil organisms are sensitive to, such as hydrology [11]. Similarly, replacing or sealing the
upper soil horizons with sand, gravel, or pavement (e.g., transportation, urban–industrial),
mixing the mineral and organic soil layers (e.g., cultivation), and other landscape conver-
sions can negatively impact the abundance and diversity of soil-associated biota [16–20].
Anthropogenic contaminants carried by water or dust can eventually make their way to
the soil and therefore to the food chains of the organisms that live within it [10,21–24]. In
addition, introduction of non-native species as a result of human activity has resulted in
substantially altered soil communities [10,25,26]. Overall, monitoring for changes in soil
biodiversity associated with human activities is an integral component of understanding,
managing, and conserving the ecological services these organisms provide [1–5].

Oribatid mites are among the most abundant soil organisms and possess important
biological/ecological attributes that make them strong indicators for environmental moni-
toring [17,27–36]. Oribatid mites play a major role in soil nutrient cycling, as they feed on
and break down organic materials, and concentrate these materials into faecal pellets for
colonization and further breakdown by fungi and bacteria [17]. Through their activities,
they disperse other organisms and move soil sediments and nutrients through the soil
profile [17,37]. Unlike most smaller-bodied invertebrates, oribatids have a relatively long
lifespan (lasting multiple years), low fecundity, and slow growth rates [17,38], which make
them amenable to disturbances and degradation in soil over long term [39]. Oribatid
mites are diverse, abundant, found in almost every terrestrial habitat, and their relatively
low motility means that they are likely to produce a strong signal of local environmental
change [17,40,41]. Oribatids have shown sensitivity to fine-scale environmental gradi-
ents [42–45]. Their taxonomy is also relatively well established compared to many other
soil-dwelling organisms, including the availability of regional checklists [46–49], which
supports the ability to provide species-level identifications. As a result, oribatid mites
have been studied as bioindicators of soil quality in many parts of the world [28,35,50–60],
including for the aim of this study, which is to examine the effect of multiple ecological
drivers on mite community structure in the oil sands region of Alberta, Canada.

The oil sands region (OSR) of Canada is situated within the provinces of Alberta
and Saskatchewan, and hosts a rich diversity of boreal flora and fauna. The region has
been subjected to various types of natural and anthropogenic disturbance. As of 2019,
anthropogenic disturbance (i.e., human development or “human footprint”) occupied 16.1%
of the OSR in Alberta, including agriculture (7.8%; 10,895 km2), forestry (4.2%; 5819 km2),
energy (2.3%; 3155 km2), transportation (0.9%; 1220 km2) and urban/industrial (0.8%;
1192 km2) [61]. The OSR encompasses the Athabasca, Cold Lake, and Peace River oil
sands deposits, a combined area of 142,200 km2 containing 95% of Canada’s proven oil
reserves and the fourth largest oil reserves in the world [62]. About 4800 km2 of reserves
are shallow enough to access using surface mines, while the remaining reserves are deeper
and require access through in situ drilling and production methods [62]. Thus, intensive
oil and gas exploration and production in the region have created several human footprint
types including surface mining, in situ well sites, seismic lines for energy exploration,
transmission lines, and pipelines. In addition, industrial facilities, urban centres, and roads
have expanded to access these economic resources.
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Alberta’s monitoring data for oribatid mites show that individual species are responding
to the human footprint in the OSR [63]. Community metrics using a subset of these data have
previously revealed that oribatid mites respond to forest harvest and linear disturbance in
the OSR [36]. However, the full dataset has not yet been assessed to determine how oribatid
mite communities are responding to all broad classes of human footprint types through
changes in total abundance, diversity, and community composition. Therefore, our objectives
in this study were to: (1) assess the relationship between OSR human footprint and oribatid
mite abundance, diversity, and community composition, (2) assess oribatid mite community
responses to natural land cover types, space, and climate, and (3) use this information to
discuss how oribatid mites may be useful as environmental indicators in the OSR.

2. Materials and Methods

Study Area. Our study focused on long term environmental monitoring sites located
within the OSR of Alberta, which encompasses the Athabasca, Cold Lake, and Peace River
oil sands deposits, a combined area of 140,213 km2 (Figure 1). Natural land cover in the
OSR includes large areas covered by upland and lowland forests and low-lying wetlands,
bogs, and fens. Upland forests are treed by trembling aspen (Populus tremuloides Michx.),
balsam fir (Abies balsamea (L.) P. Mill.), balsam poplar (Populus balsamifera L.), jack pine
(Pinus banksiana Lamb.), lodgepole pine (Pinus contorta Dougl. ex Loud), paper birch
(Betula papyrifera Marshall), and white spruce (Picea glauca (Moench) Voss); the lowlands by
black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenburg) and tamarack (Larix laricina
(Du Roi) K. Koch). There is a wide diversity of understory plants, including flora associated
with peatlands. These regions also contain human footprint, including surface mines, in
situ well sites, roads, urban and industrial developments, seismic exploration, pipeline and
transmission lines, cultivation, and forest harvest. In our study, we analysed data from
420 sites sampled between 2007 and 2019. Some sites received more than one sampling
visit, which provided a dataset from a total of 583 site-level collection events during this
13 year time period.

Field soil sampling. Sites were selected throughout the OSR following a 20 km system-
atic grid [64]. Soil samples were taken at each site to monitor oribatid mites following
established terrestrial field protocols [65]. In brief, at each 1 ha study site, four 1 m ra-
dius soil plots were placed 80 m diagonally from the site centre, i.e., 10 m outside of the
northeast, northwest, southeast, and southwest corners of the site. The soil plots were
established outside of the main 1 ha site to minimize soil disturbance within the site for
other measurements. At each soil plot, at least four 40 cm depth soil cores were taken and
laid out on a sheet. The organic layer from these cores was composited, and then 500 mL
was measured and placed into a labelled cloth soil bag. If the four cores did not result in
enough soil volume, then more soil cores were taken to reach the 500 mL requirement for
each plot. Thus, 2 L of organic soil was collected from each site. The soil was placed in
coolers with ice and shipped to the ABMI Processing Centre, Edmonton, Alberta, Canada
for further processing.

Oribatid mite extraction and identification. We used established standard operating pro-
cedures to process the soil and oribatid mites [66]. In brief, each organic soil collection
was placed on a modified Tullgren funnel for one week with the collection cups containing
100% ethanol for invertebrate preservation. To increase ease of sorting and identification,
each invertebrate collection was sieved using stacked 300 µm and 53 µm metal sieves. The
53 µm fractions were labelled and stored in glass scintillation vials in 100% ethanol. The
300 µm fractions were each sorted using a stereoscope to retain all adult oribatid mites
> 300 µm in ventral length, and the remaining invertebrates were returned to separate,
labelled scintillation vials. All retained oribatid mites were identified to species or mor-
phospecies via stereoscope or compound microscopy using available taxonomic keys and
species descriptions [46], then databased and curated as outlined in the standard operating
procedures. All resulting slide-mounted and ethanol collections of mites were deposited
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in the PMAE Invertebrate Zoology collection at the Royal Alberta Museum, Edmonton,
Alberta, Canada.

Figure 1. (Top left) is a map of Alberta, Canada showing oribatid mite collection localities within the
oil sands region (Athabasca Oil Sand Area in pink, Cold Lake Oil Sand Area in orange, Peace River
Oil Sand Area in green), and the remaining maps are of the main human footprint types in the oil
sands region in 2018 (available on the ABMI mapping portal at https://maps.abmi.ca (accessed on
8 March 2023)).

Land cover, space, and climate variables. We examined how natural land cover types, hu-
man footprint types, and spatial and climate characteristics impact oribatid mite community
structure. We used detailed vegetation and human footprint GIS layers [67] to characterize
each of the soil plots using a 10 m buffer radius from the plot centre. The 10 m scale was
chosen because oribatid mite communities are thought to show strong microhabitat prefer-
ence [43–45]. This scale also improves capture of the full characteristics of the soil plot and
accounts for potential deviation in plot centre location that may occur due to error in signal
propagation while using a handheld GPS receiver. We described the fine-scale habitat
characteristics of the 10 m area as proportional area of broad natural land cover types and
human footprint types. For our analyses, broad natural land cover types included bog,
fen, swamp, pine, deciduous, mixedwood, white spruce, and shrub/grass cover types. We
characterized human footprint types as mines, well sites, urban–industrial developments,
energy-related seismic lines, and other soft linear features (pipelines, transmission lines),
transportation-related soft linear features (vegetation along roads and railways, trails), for-
est harvesting, and cultivation (e.g., crop, tame pasture). Proportional areas of the natural
land cover and human footprint types were calculated for each site by pooling data for the
four soil plots, i.e., NE, NW, SE, and SW quadrants. This site-level summary was generated
for each site and survey year (Table S1). In addition to spatial variables (latitude, longitude),
we considered a broad suite of climate variables including annual heat–moisture index
(AHM), frost free period (FFP), mean annual precipitation (MAP), mean annual tempera-
ture (MAT), mean coldest month (January) temperature (MCMT), mean warmest month

https://maps.abmi.ca
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(July) temperature (MWMT), and potential evapotranspiration (PET). Climate variables
were derived from historical weather station data (500 m2 spatial resolution) using the
parameter-elevation regressions on independent slopes model (PRISM) method [68]. We
assessed collinearity between climate variables and location using variance inflation factor
(VIF) analysis [69]. We performed a stepwise removal process using the vifstep function
(usdm package) [70] in the R statistical package [71] to remove variables with VIF > 5 which
led to the retention of FFP, MAP, PET, latitude and longitude.

Statistical analyses. To reduce within-site variability across soil collections we aggre-
gated the plot (quadrant)-level species abundance of a given site and sampling year to
create a site-by-species matrix (Table S2). We used these data as a basis to examine oribatid
mite community structure in response to the landscape and spatial–climatic variables in the
R statistical package [71]. We calculated total abundance, species richness, Shannon’s diver-
sity indices, and the effective number of species (exponential of Shannon’s diversity) [72],
then assessed their response to the environmental variables using linear regression models.
For the models, we transformed the species data by log (x + 1) for abundance and richness.
We scaled the species and environmental data for all tests to obtain standardized coefficient
values across different environmental data types. This allowed us to obtain standardized
effect size statistics of different predictors that are measured on different scales and make it
possible to compare the relative effects or importance of each of the predictors. Permuta-
tional multivariate analysis of variance (PERMANOVA) was used to assess the influence of
the environmental variables on mite community composition using the adonis2 function
(vegan package) [73] with Bray–Curtis dissimilarity. We used 999 permutations to test the
statistical significance of the overall model and of each variable. Because there were sites
with no mites recorded that can make their Bray–Curtis dissimilarities meaningless, we
added a single dummy species with a negligible abundance (0.00001) so that all sites could
be included in the analysis. In addition, we performed redundancy analysis (RDA) to assess
overall patterns of association of oribatid mite species with the 21 environmental variables.
RDA is a constrained ordination method that summarises the variance explained by the
dependent variables by a linear combination of explanatory variables. We assessed the full
model and each constrained axis for significance using anova.cca. We conducted variance
partitioning using the function varpart with three categories of the variable: natural land
cover types, human footprint types, and climate–space variables.

3. Results

Species data summary. Within the oil sands region in Alberta, we identified a total of
29,301 oribatid mites between 2007 and 2019, from 583 collection events at 420 sites (Figure 1).
These mites were identified to 123 described species and 78 morphospecies, representing
93 genera, 47 families, 25 superfamilies and five infraorder/hyporders (Table A1). Total
abundance ranged between 0–239 individuals per site (mean ± SD = 50.3 ± 36.8), species
richness ranged between 0–33 species per site (mean ± SD = 13.2 ± 6.02), Shannon’s diversity
ranged between 0–3.1 indices per site (mean ± SD = 2.0 ± 0.62), and the effective number of
species ranged between 1–23.3 species per site (mean ± SD = 8.9 ± 4.14) (Table S3).

Effect of land cover, space, and climate on species abundance, richness and diversity. The
multiple linear regression model for total abundance indicated that the natural land cover,
human footprint, space, and climate variables explained 24.3% (adjusted R2) of the variation
(Table A2). Mines, well sites, cultivation, and longitude significantly explained (p < 0.05)
variation, while road/rail verges and trails showed a marginally significant (p < 0.07)
impact on total abundance. Abundance responded negatively to these footprint types and
responded positively eastward in longitude (Table A2, Figure 2). The model for species
richness explained 43.2% (adjusted R2) of the variance. Richness was significantly reduced
by mines and cultivation, and significantly increased eastward with longitude. The model
showed overall higher species richness with natural land cover and forest harvesting. In
addition, less intense human footprint types had greater species richness than intense
human footprint types (Table A3). The model for Shannon’s diversity revealed that the in-
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dependent variables explained 46.4% (adjusted R2) of the variance (Table A4). The diversity
increased with natural land cover types (bog, deciduous, fen, grass/shrub, mixedwood,
pine, swamp, white spruce), less intense human footprint types (forest harvesting, seismic,
pipelines and transmission lines), and longitude. In contrast, intense human footprint types
(mines, urban–industrial, cultivation) and vegetated road/trail/verges (transportation
soft linear) had a negative effect (Table A4, Figure 2). The model for effective number of
species explained 31.7% (adjusted R2) of the variance and the pattern of its relationship
with environmental variables was similar to that obtained for Shannon’s diversity.

Figure 2. Linear regression plots for oribatid mite (a) total abundance and (b) Shannon’s diversity,
against 21 land cover and climate–space variables in the oil sands region of Alberta, Canada. Standardized
coefficients (i.e., beta weights) allow a better comparison of the relative influence of environmental
variables on response variables. For example, total abundance is expected to respond strongly
(negatively) to cultivation and mines compared to seismic lines. Word colour: yellow = human
footprint; green = natural land cover; blue = climate–space.

Species composition. PERMANOVA analysis indicated that mite composition was
impacted by land cover composition and spatial climatic variables that together explained
24.5% of the total variance (Table A5). All included variables except seismic, well sites,
and mixedwood were significant (p < 0.05). Similarly, redundancy analysis indicated that
the environmental variables explained 20.8% of the total variance of mite community
composition (Figure 3). The overall RDA model was significant (p = 0.001), as were the first
six axes (p < 0.05). The first three RDA axes included 42.4%, 13.6%, and 8.0% of the explained
variation, respectively. The ordination plot (Figure 3) showed that the first axis represented
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a change in mite composition along a gradient from upland habitat types (positive loading:
e.g., deciduous, mixedwood, white spruce, forest harvesting) to lowland habitat types
(negative loading: e.g., bog, fen). In addition, it was linked to a gradient in climate (positive
loading: FFP, PET) and spatial variables (negative loading: latitude). The second RDA axis
represented a change in mite composition from natural land cover types and less intense
human footprint types (positive loading: bog, deciduous, fen, forest harvesting) to more
intense human footprint types (negative loading: mines, urban–industrial, transportation
soft linear, cultivation). The second axis was also linked to a gradient in climate and spatial
variables (positive loading: MAP, latitude, longitude; negative loading: FFP, PET). The
third axis had a very high positive loading for pine and latitude, and a negative loading for
PET and FFP.

Variance partitioning indicated that natural land cover types (adjusted R2: 11.8%)
contributed the most to differences in oribatid mite community structure, and human foot-
print types (adjusted R2: 5.5%) and climate–space (adjusted R2: 5.6%) contributed equally
(Table A6). The adjusted R2 value gives the full contribution of each partition, including
unique contribution (natural land cover = 7%, human footprint = 3%, climate–space = 3%)
and overlap (natural land cover/human footprint = 2%, natural land cover/climate–
space = 2%, and natural land cover/human footprint//climate–space = 1%).

Figure 3. Redundancy analysis (RDA) plot of oribatid mite composition against 21 land cover and
climate–space variables in the oil sands region of Alberta, Canada. The proportion of variance
explained in each axis is shown. The triangles represent 201 oribatid mite species. The most vis-
ible triangles are labelled with the species name or numbered as follows: 1. Cepheus sp. 1 DEW,
2. Allosuctobelba sp. 2 DEW, 3. Hoplophthiracarus illinoisensis, 4. Trhypochthonius tectorum, 5. Schelori-

bates pallidulus, 6. Ceratoppia quadridentata arctica, 7. Scutozetes lanceolatus, 8. Hydrozetes sp. E RAN,
9. Roynortonella sp. 1 DEW, 10. Mainothrus badius, 11. Dentizetes ledensis, 12. Protoribates haughlandae,
13. Carabodes granulatus, 14. Tectocepheus velatus, 15. Nothrus sp. B DEW, 16. Hypochthonius rufulus,
17. Unduloribates dianae, 18. Eremaeus translamellatus, 19. Heminothrus longisetosus, 20. Neonothrus

humicola, 21. Platynothrus peltifer, 22. Trimalaconothrus maior, 23. Mycobates incurvatus, 24. Eueremaeus

quadrilamellatus, 25. Diapterobates humeralis, 26. Phthiracarus boresetosus, 27. Chamobates cuspidatus,
28. Peloribates sp. 3 DEW, 29. Zetomimus francisi, 30. Ceratozetes cuspidatus, 31. Carabodes polyporetes,
32. Phthiracarus borealis, 33. Epidamaeus sp. 2 DEW, 34. Epidamaeus coxalis, 35. Gymnodamaeus ornatus,
36. Platynothrus yamasakii, 37. Quatrobelba montana, 38. Dorycranosus acutidens, 39. Epidamaeus arctico-

lus, 40. Fuscozetes fuscipes, 41. Trichoribates striatus, 42. Peloribates pilosus, 43. Tectocepheus sarekensis,
44. Anachipteria howardi, 45. Peloptulus sp. 1 DEW, 46. Oribatula sp. 1 DEW. See Table S4 for species
scores, Table S5 for site scores, and Table S6 for biplot scores for constraining variables.
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4. Discussion

We found that natural land cover, human footprint, climate, and space significantly
contributed to mite community structure in Canada’s oil sands region. Our results showed
a differential impact of human footprint types on abundance, species richness, and diversity
indices in mite communities. Among energy-related footprint types, oribatid mites were
more affected in mines, with lower abundance and richness than at well sites, seismic
lines, pipelines, or transmission lines. However, the relative impact of mines appeared to
be lower than for cultivation, and it is likely that sites with mine footprint were located
within the mine buffer zone which may have undergone some degree of reclamation,
in contrast to active mining sites. This may also have been the case for well sites. In
addition, the sample size with energy-related footprint was small (for mines and well
sites) and the sampled sites included a mosaic of other habitat types besides energy-related
footprints which may obscure the full impact of these human footprint types on oribatid
mites detected in our analyses. These results suggest that targeted sampling of oribatid
mites in these footprint types, and relating their abundance and diversity metrics to soil and
habitat quality parameters (including post-reclamation) will be of particular importance for
future study. Using oribatid mites as an indicator of soil organism response to reclamation
practices has been successful both within [34] and outside [28,74–76] the boundaries of the
OSR, supporting their use as bioindicators for this purpose.

We found that total oribatid mite abundance was similar across natural land cover
types as well as most human footprint types (e.g., forestry, seismic lines) except for being
significantly negatively impacted by mines, well sites, and cultivation. This suggests the
latter human footprint types could have a more significant effect on soil health due to the
practice of removing or recurrently disturbing the topsoil and the supported fauna and
flora. Several studies have revealed that the abundance of oribatid mites, and consequently
their richness, typically increases in the topsoil because of the rich supply of food sources,
including dead organic material in the litter (LFH), fungi, and bacteria [77–79]. However,
when land use practices severely alter or remove the topsoil, such as through surface mining
and cultivation, the soil fauna are also impacted. For example, studies have found that soil
mite abundance and diversity were lower in agricultural sites than in forest sites [51,79], a
finding that our study also supports. However, the same negative effect on abundance was
not evident for other energy related activities (e.g., seismic lines) or for forest harvesting,
which showed similar abundance to that found in natural land cover types. This suggests
that such successional human footprint types that retain most of the topsoil biological
legacy, including the organic matter, can sustain abundant oribatid mite fauna. Finally,
forest type differences, which can include differences in understory plant composition,
litter composition, and abiotic soil conditions, appear to have limited effect on the total
abundance of oribatid mites at broad spatial scale.

Despite their similar influence on total mite abundance, the relative responses of
mite diversity indices appear to differ among natural land cover, forest harvesting, and
energy-related soft linear human footprints (seismic lines, pipelines, and transmission
lines). In particular, the relative influence of energy-related linear human footprints on
species diversity, albeit positive, was lower than that of natural land cover and forest
harvesting. Differences in linear human footprints such as area, shape, and associated
physico-chemical changes could have contributed to such differences [11]. Our analyses
also emphasize that the other human footprint types (cultivation, mines, road/trail verges)
with more impact on soil integrity (e.g., through prolonged removal, mixing of soil horizons,
change in soil structure, or soil compaction) lowered diversity further. More focused efforts
to study linear disturbances would be helpful as we have little to no understanding of
how edge effects from these disturbance types impact soil mite biodiversity in the OSR,
including transportation-related pollutants, seismic-related compaction and shock waves,
and changes to microclimate (e.g., light, temperature, moisture). Distance-to-edge transects
that include soil sampling and analyses of oribatid mites would improve understanding of
soil condition and soil biodiversity within these linear features.
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Our study also showed differentiation of mite community composition along gradients
of land cover composition. In particular, there was a notable difference in mite composition
between lowland bog and fen habitats and the upland forest types, including deciduous
and mixedwood forests and harvested sites, indicating a strong link between above- and be-
lowground biodiversity. Soils influence the occurrence and distribution of different biomes
globally, including both overstory composition and belowground biodiversity [80]. In turn,
overstory composition influences soil characteristics, including the amount and diversity
of litter, peat, and other biotic (e.g., fungal diversity) and abiotic (e.g., pH) properties that
potentially drive community structure of oribatid mites [81–85]. In our study, species
such as Epidamaeus coxalis and Euphthiracarus flavus were more abundant in upland forests,
while species such as Carabodes labyrinthicus and Hoplophthiracarus illinoisensis were differ-
entially abundant in lowland habitats. Our results also support that changes to overstory
composition (e.g., through human disturbance) can lead to changes in belowground mite
composition. We detected a compositional difference between intense human footprint
types (e.g., mines, cultivation) from the natural land cover and forest harvest sites. This is
not surprising given the low abundance and richness of mites in those human footprint
types compared to in natural habitats. In addition, we found dominance by a small number
of species in those human footprint types; for example, the morphospecies Oribatula sp.
1 DEW and Tectocepheus sarekensis were associated with cultivated sites. Further work is
needed to study and clarify the relationships of individual oribatid mite species to natural
land cover and human footprint types within the OSR, along with their functions within
these systems.

Our analyses also showed that space and climate variables influence mite communi-
ties. Total abundance, richness, and diversity of oribatid mites significantly increased with
eastward longitude. Variance partitioning also showed that, although natural land cover
types contributed the most to differences in oribatid mite community structure, both human
footprint types and large scale space and climate variables related to temperature (FFP, PET,
Latitude) and precipitation (MAP) also contributed to differences in mite community com-
position. The species composition relationship to these broad scale environmental variables
might reflect individual species’ tolerances (preferences) to climate variables, biogeograph-
ical or land-use history, or other spatially structured unmeasured environmental variables
such as soil properties [84,86] that are known to influence mite communities. For example,
Epidamaeus coxalis correlated with both westward longitude and the increased mean annual
precipitation that follows along the foothills to the southwest, indicating that these large-scale
climate patterns are influencing species distributions. Other species were influenced by frost-
free period, which was highly positively correlated with annual heat–moisture index (AHM),
mean warmest month (July) temperature, and mean annual temperature (MAT). Some species
were positively correlated with increased FFP (e.g., Atropacarus striculus) whereas others were
negatively correlated (e.g., Malaconothrus mollisetosus, Neonothrus humicola). These differences
may reflect species’ preferences or tolerance to temperature gradients in this large expanse of
boreal forest, including those associated with elevation gradients such as the Birch Mountains
and the eastward extension of the foothills into the region. We note that disturbance has been
advocated as the primary factor driving plant and animal abundance and distribution [79]
and there are spatial differences in human footprint types across the OSR, such as higher
mining activity in the northeast, higher concentration of well sites and pipelines towards the
east, higher density of cultivated sites along the western and southern borders, and different
patterns of density across the landscape in forest harvest and seismic lines (see Figure 1 or
ABMI mapping portal at https://maps.abmi.ca (accessed on 8 March 2023)). We also note that
large-scale quantification of abiotic variables will not have captured fine scale (microclimate)
differences that arise due to factors such as habitat structure and topography differences,
which can also be important for mite community structure. For example, forest harvesting
can modify local soil temperature and moisture regimes [87], moisture differences in peatland
hummocks and hollows have been associated with differences in oribatid community struc-

https://maps.abmi.ca
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ture [45], and air temperature has been found to influence the dispersion of oribatid mites
among forest microhabitats [44].

The current study has some important limitations that need to be addressed to answer
more targeted environmental effects monitoring or ecological questions specific to the OSR.
First, due to the limitations of the existing dataset being used, the number of sites sampled
with energy-related human footprints is relatively small, in particular those related to
surface mines and well sites. Second, the sampled sites included a mosaic of habitat and
land use types, which may obscure the full impact of each human footprint type. Third,
further work to assess functional groups may help to provide greater insight into stability,
resistance, and resilience of lands significantly altered by intense human footprint types
(cultivation, mines, well sites). There is a limit to the number of individuals that can fill a
community, or a standardized volume of soil as was our sampling method, and changes
to soil conditions may decrease available food and space. However, the much debated
diversity–stability theory [88] proposes that multiple species present in the community can
stabilize ecosystem processes if these species vary in response to environmental conditions,
such that an increase in abundance of one species can compensate for the decreased
abundance of another. In addition, the insurance hypothesis [89] suggests that biologically
diverse communities provide resilience to an ecosystem because the accumulation of species
increases the probability that any one of them will have the necessary traits to adapt to
a changing environment and to act as a buffer against loss of other species. As such, the
comparison of patterns in total abundance and species richness and diversity may provide
information on ecosystem resilience. We found less intense human footprint types to
have similar total abundance to natural land cover types but reduced species richness and
diversity, indicating that there were species negatively impacted by the human footprint
but also other species present that could adapt and act as a buffer with increased abundance.
For intense human footprint types, the combined reduction in total abundance, richness
and diversity may indicate that these ecosystems are destabilized, lacking the diverse
community needed to compensate for species-level changes in abundance and thereby
facing a loss in resilience. Similar results have been found by other studies on intense
disturbance practices, for example with soil microbial communities [90]. Assessing oribatid
mite functional groups may help to further connect changes in abundance and diversity to
stability, resistance, and resilience of ecosystems in the OSR.

A focal research question in the energy industry has been the challenge of reclaiming
lands impacted by the various energy-related human footprints [91]. For example, in
Alberta there are more than 239,000 drilled well sites, of which ~24% have been certified as
reclaimed or exempted [92]. The long-term goal of reclamation of Alberta’s well sites is to
return the disturbed land to support biodiversity and various land uses similar to what
existed prior to exploitation/development activities (i.e., equivalent land capability) [93,94].
Various ecological indicators are used to assess the long-term recovery of reclaimed lands
including soil biodiversity and physico-chemical attributes [12,34,86,93] and aboveground
plant communities [13,95,96]. The assessment of soil health recovery might be considered
a key component in the evaluation of post-reclamation ecological recovery of mines, and
oribatid mites have been studied and suggested as biological indicators of soil recovery for
this human footprint type [34]. Future investigation of soil conditions could benefit from
targeted sampling of oribatid mite communities in energy footprints, including following
post-mining reclamation and recovery.

In conclusion, oribatid mite communities show a clear response at the landscape-level
to natural land cover, anthropogenic disturbance, space, and climate in the Canadian oil
sands region. As a result, this taxonomic group could be a strong bioindicator for future
efforts to assess soil condition in the OSR. Their response to land use in the region could
be further delineated with an experimental design specific to studying footprint and cu-
mulative effects such as the Hierarchical Before-After Dose–response (BADR) monitoring
design currently under investigation using other taxa [97]. In addition, experimental design
specific to assessment of management strategies within land use types (e.g., reclamation
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practices in energy, management practices in forestry or agricultural production) are neces-
sary to make further conclusions on best management practices to maintain soil biodiversity
in the OSR.
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summed for each site collection event in the oil sands region of Alberta, Canada; Table S3: Site
summary with oribatid mite total abundance, species richness, Shannon’s diversity index, and
effective number of species.; Table S4: Species scores from redundancy analysis (RDA) of oribatid
mite composition against 21 land cover and climate–space variables in the oil sands region of Alberta,
Canada; Table S5: Site scores from redundancy analysis (RDA) of oribatid mite composition against
21 land cover and climate–space variables in the oil sands region of Alberta, Canada; Table S6: Biplot
scores from redundancy analysis (RDA) of oribatid mite composition against 21 land cover and
climate–space variables in the oil sands region of Alberta, Canada.
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Appendix A

Table A1. Summary of oribatid mite species detected in the oil sands region of Alberta, Canada.

Superfamily Family Species Author

Parhypochthonioidea Gehypochthoniidae Gehypochthonius sp. 1 LML
Brachychthonioidea Brachychthoniidae Eobrachychthonius latior (Berlese, 1910)
Hypochthonioidea Eniochthoniidae Eniochthonius crosbyi (Ewing, 1909)

Eniochthonius mahunkai Norton and Behan-Pelletier, 2007
Eniochthonius minutissimus (Berlese, 1903)
Eniochthonius sp. 1 LML

Hypochthoniidae Hypochthonius luteus Oudemans, 1917
Hypochthonius rufulus C.L. Koch, 1836

https://www.mdpi.com/article/10.3390/d15040469/s1
https://www.mdpi.com/article/10.3390/d15040469/s1
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Table A1. Cont.

Superfamily Family Species Author

Euphthiracaroidea Euphthiracaridae Euphthiracarus cf. flavus (Ewing, 1908)
Euphthiracarus cf. fulvus (Ewing, 1909)
Rhysotritia ardua (C.L. Koch, 1841)

Oribotritiidae Mesotritia nuda (Berlese, 1887)
Protoribotritia sp. 1 DEW

Phthiracaroidea Phthiracaridae Atropacarus striculus (C. L. Koch, 1835)
Hoplophthiracarus illinoisensis (Ewing, 1909)
Phthiracaridae sp.
Phthiracarus boresetosus Jacot, 1930
Phthiracarus cf. borealis (Trägårdh, 1910)

Crotonioidea Crotoniidae Camisia biurus (C.L. Koch, 1839)
Camisia biverrucata (CL Koch, 1839)
Camisia horrida (Hermann, 1804)
Camisia sp. 1 DEW
Camisia spinifer (C.L. Koch, 1835)
Heminothrus longisetosus Willmann, 1925
Heminothrus thori (Berlese, 1904)
Neonothrus humicola Forsslund, 1955
Platynothrus peltifer (C.L. Koch, 1839)
Platynothrus sibiricus Sitnikova, 1975
Platynothrus sp. 1 DEW
Platynothrus yamasakii Aoki, 1958

Malaconothridae Malaconothrus cf. mollisetosus Hammer, 1952
Trimalaconothrus foveolatus (Willmann, 1931)
Trimalaconothrus maior (Berlese, 1910)
Trimalaconothrus sp. 3 DEW

Nanhermanniidae Nanhermannia sp. 1 DEW
Nothridae Nothrus anauniensis Canestrini and Fanzago, 1876

Nothrus borussicus Sellnick, 1928
Nothrus cf. pratensis Sellnick, 1928
Nothrus sp. B DEW

Trhypochthoniidae Mainothrus badius (Berlese, 1905)
Mucronothrus nasalis (Willmann, 1929)
Trhypochthoniellus setosus
canadensis

Hammer, 1952

Trhypochthonius cf. cladonicola (Willmann, 1919)
Trhypochthonius cf. nigricans Willmann, 1928
Trhypochthonius tectorum (Berlese, 1896)

Achipterioidea Achipteriidae Achipteria coleoptrata (Linnaeus, 1758)
Achipteria sp. 1 DEW
Anachipteria cf. howardi (Berlese, 1908)
Anachipteria sp. 1 DEW
Parachipteria bella (Sellnick, 1928)
Parachipteria sp.
Parachipteria sp. 1 DEW

Tegoribatidae Tegoribates americanus Hammer, 1958
Tegoribates subniger Ewing, 1917

Carabodoidea Carabodidae Carabodes granulatus Banks, 1895
Carabodes labyrinthicus (Michael, 1879)
Carabodes polyporetes Reeves, 1991
Carabodes wonalancetanus Reeves, 1990
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Table A1. Cont.

Superfamily Family Species Author

Cepheoidea Cepheidae Cepheus sp. 1 DEW
Cepheus sp. 2 DEW
Cepheus sp. 2B DEW
Oribatodes mirabilis Banks, 1895

Ceratozetoidea Ceratozetidae Ceratozetes cuspidatus Jacot, 1939
Ceratozetes gracilis (Michael, 1884)
Ceratozetes mediocris Berlese, 1908
Ceratozetes parvulus Sellnick, 1922
Ceratozetes sp. 1 LML
Ceratozetes sp. 2 LML
Ceratozetes thienemanni Willmann, 1943
Dentizetes ledensis Behan-Pelletier, 2000
Diapterobates humeralis (Hermann, 1804)
Diapterobates sp.
Diapterobates variabilis Hammer, 1955
Fuscozetes fuscipes (C.L. Koch, 1844)
Lepidozetes singularis Berlese, 1910
Lepidozetes sp. 1 DEW
Neogymnobates luteus (Hammer, 1955)
Neogymnobates sp. 1 DEW
Scutozetes lanceolatus Hammer, 1952
Sphaerozetes arcticus Hammer, 1952
Sphaerozetes sp. 1 DEW
Trichoribates copperminensis Hammer, 1952
Trichoribates sp.
Trichoribates sp. 2 DEW
Trichoribates sp. 3 DEW
Trichoribates sp. 5 LML
Trichoribates striatus Hammer, 1952

Chamobatidae Chamobates cf. cuspidatus (Michael, 1884)
Chamobates sp. 2 DEW

Punctoribatidae Mycobates hylaeus Behan-Pelletier, 1994
Mycobates incurvatus Hammer, 1952
Mycobates perates Behan-Pelletier, 1994
Pelopsis bifurcatus (Ewing, 1909)
Punctoribates palustris (Banks, 1895)

Zetomimidae Heterozetes aquaticus (Banks, 1895)
Zetomimus francisi (Habeeb, 1974)

Cymbaeremaeoidea Cymbaeremaeidae Scapheremaeus palustris (Sellnick, 1924)
Damaeoidea Damaeidae Dyobelba sp. 1 DEW

Epidamaeus arcticolus (Hammer, 1952)
Epidamaeus canadensis (Banks, 1909)
Epidamaeus cf. fortispinosus Hammer, 1967
Epidamaeus coxalis (Hammer, 1952)
Epidamaeus floccosus Behan-Pelletier and Norton, 1985
Epidamaeus koyukon Behan-Pelletier and Norton, 1985
Epidamaeus sp. 1 DEW
Epidamaeus sp. 2 DEW
Epidamaeus sp. 3 DEW
Epidamaeus sp. 4 DEW
Epidamaeus sp. 5 DEW
Epidamaeus sp. 8 DEW
Epidamaeus tritylos Behan-Pelletier and Norton, 1983
Quatrobelba montana Norton, 1980

Galumnoidea Galumnidae Galumna sp. 1 DEW
Pergalumna sp. 1 DEW
Pilogalumna sp.
Pilogalumna sp. 1 DEW
Pilogalumna sp. 2 DEW
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Table A1. Cont.

Superfamily Family Species Author

Gustavioidea Astegistidae Astegistes sp. 1 DEW
Gustaviidae Gustavia sp. 1 DEW
Liacaridae Dorycranosus cf. acutidens (Aoki, 1965)

Dorycranosus parallelus (Hammer, 1967)
Dorycranosus sp. 4 DEW

Peloppiidae Ceratoppia bipilis (Hermann, 1804)
Ceratoppia quadridentata arctica Hammer, 1955

Tenuialidae Hafenferrefia sp. 1 DEW
Hermannielloidea Hermanniellidae Hermanniella robusta Ewing, 1918
Licneremaeoidea Passalozetidae Bipassalozetes cf. intermedius (Mihelčič, 1954)
Limnozetoidea Hydrozetidae Hydrozetes octosetosus Willmann, 1932

Hydrozetes sp.
Hydrozetes sp. 1 DEW
Hydrozetes sp. 2 DEW
Hydrozetes sp. 3 DEW
Hydrozetes sp. E RAN

Limnozetidae Limnozetes canadensis Hammer, 1952
Oppioidea Autognetidae Autogneta sp. 2 DEW

Oppiidae Moritzoppia sp. 1 DEW
Multioppia sp. 1 DEW
Oppiella cf. washburni (Hammer, 1952)
Oppiella sp. 2 DEW
Oppiella sp. 3 DEW
Oppiella sp. 4 LML
Ramusella sp. 2 DEW

Thyrisomidae Banksinoma lanceolata canadensis Fujikawa, 1979
Banksinoma spinifera (Hammer, 1952)

Oribatelloidea Oribatellidae Oribatella banksi Behan-Pelletier and Walter, 2012
Oribatella ewingi Behan-Pelletier and Walter, 2012
Oribatella jacoti Behan-Pelletier, 2011
Oribatella reticulatoides Hammer, 1955
Oribatella yukonensis Behan-Pelletier and Walter, 2012

Oripodoidea Haplozetidae Peloribates canadensis Hammer, 1952
Peloribates pilosus Hammer, 1952
Peloribates sp.
Peloribates sp. 3 DEW
Peloribates sp. 4 DEW
Protoribates haughlandae Walter and Latonas, 2013
Protoribates robustior (Jacot, 1937)
Protoribates sp.
Protoribates sp. 3 LML

Mochlozetidae Podoribates longipes (Berlese, 1887)
Oribatulidae Eporibatula sp. 1 DEW

Lucoppia burrowsii (Michael, 1890)
Oribatula sp. 1 DEW
Oribatula sp. 2 LML
Phauloppia boletorum (Ewing, 1913)
Zygoribatula bulanovae Kulijew, 1961
Zygoribatula sp. 1 DEW
Zygoribatula sp. 2 DEW

Parakalummidae Neoribates sp. 1 DEW
Neoribates sp. 2 DEW

Scheloribatidae Dometorina plantivaga (Berlese, 1895)
Hemileius haydeni (Higgins and Woolley, 1975)
Paraleius leontonycha (Berlese, 1910)
Scheloribates laevigatus (C.L. Koch, 1835)
Scheloribates pallidulus (C.L. Koch, 1841)
Scheloribates sp.
Scheloribates sp. 3 DEW
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Table A1. Cont.

Superfamily Family Species Author

Phenopelopoidea Phenopelopidae Eupelops cf. septentrionalis (Trägårdh, 1910)
Eupelops sp. 2 DEW
Eupelops sp. 3 DEW
Peloptulus sp. 1 DEW
Propelops alaskensis (Hammer, 1955)
Propelops canadensis (Hammer, 1952)

Unduloribatidae Unduloribates dianae Behan-Pelletier and Walter, 2009
Plateremaeoidea Gymnodamaeidae Gymnodamaeus cf. ornatus Hammer, 1952

Pleodamaeus sp. 1 DEW
Roynortonella gildersleeveae (Hammer, 1952)
Roynortonella sp. 1 DEW

Tectocepheoidea Tectocepheidae Tectocepheus sarekensis Trägårdh, 1910
Tectocepheus velatus (Michael, 1880)

Trizetoidea Suctobelbidae Allosuctobelba gigantea (Hammer, 1955)
Allosuctobelba sp. 2 DEW
Suctobelbella punctata (Hammer, 1955)
Suctobelbella sp. 2 DEW
Suctobelbella sp. 3 DEW

Zetorchestoidea Eremaeidae Eremaeus sp.
Eremaeus translamellatus Hammer, 1952
Eueremaeus cf. quadrilamellatus (Hammer, 1952)
Eueremaeus foveolatus (Hammer, 1952)
Eueremaeus marshalli Behan-Pelletier, 1993
Eueremaeus masinasin Behan-Pelletier, 1993
Eueremaeus trionus (Higgins, 1979)

Table A2. Summaries of multiple regression model of total abundance of oribatid mites in the oil
sands region of Alberta, Canada.

Coefficient Standard Standardized Standard
Error Coefficient Error

Energy Footprint
Mines −2.314 0.664 −0.305 0.087 ***
Well sites −3.733 1.329 −0.114 0.041 **
Seismic −0.426 1.062 −0.018 0.045
Pipeline/Transmission Lines 0.108 0.696 0.011 0.074

Other Human Footprint
Urban/Industrial −0.982 0.641 −0.143 0.093
Road/Rail Verges and Trails −2.181 1.197 −0.103 0.057
Forest Harvest 0.021 0.619 0.006 0.186
Cultivation −1.653 0.626 −0.407 0.154 **

Natural Land Cover
Bog 0.104 0.610 0.037 0.218
Deciduous −0.134 0.611 −0.047 0.212
Fen −0.033 0.618 −0.010 0.185
Grass/Shrub −0.279 0.773 −0.021 0.058
Mixedwood 0.056 0.640 0.009 0.106
Pine −0.178 0.621 −0.043 0.152
Swamp −0.430 0.630 −0.092 0.135
White spruce −0.107 0.654 −0.017 0.101

Climate
Frost Free Period 0.006 0.008 0.044 0.058
Mean Annual Precipitation −0.002 0.002 −0.060 0.056
Potential Evapotranspiration 0.000 0.002 0.014 0.063
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Table A2. Cont.

Coefficient Standard Standardized Standard
Error Coefficient Error

Space
Latitude −0.077 0.066 −0.087 0.074
Longitude 0.068 0.020 0.152 0.044 ***

Significant relationships shown in bold: * <0.05, ** <0.01, *** <0.001.

Table A3. Summaries of multiple regression model of species richness for oribatid mites in the oil
sands region of Alberta, Canada.

Coefficient Standard Standardized Standard
Error Coefficient Error

Energy Footprint
Mines −1.291 0.381 −0.257 0.076 ***
Well sites −1.058 0.761 −0.049 0.035
Seismic 0.757 0.609 0.049 0.039
Pipeline/Transmission Lines 0.409 0.399 0.066 0.064

Other Human Footprint
Urban/Industrial −0.653 0.367 −0.144 0.081
Road/Rail Verges and Trails −0.961 0.686 −0.069 0.049
Forest Harvest 0.418 0.355 0.190 0.161
Cultivation −0.937 0.359 −0.349 0.134 **

Natural Land Cover
Bog 0.612 0.349 0.330 0.188
Deciduous 0.365 0.350 0.192 0.184
Fen 0.585 0.354 0.265 0.160
Grass/Shrub 0.681 0.443 0.077 0.050
Mixedwood 0.572 0.367 0.143 0.092
Pine 0.268 0.356 0.099 0.131
Swamp 0.301 0.361 0.098 0.117
White spruce 0.469 0.375 0.109 0.087

Climate
Frost Free Period 0.005 0.004 0.055 0.050
Mean Annual Precipitation −0.001 0.001 −0.038 0.049
Potential Evapotranspiration 0.001 0.001 0.030 0.055

Space
Latitude −0.017 0.038 −0.030 0.064
Longitude 0.036 0.011 0.121 0.038 **

Significant relationships shown in bold: * <0.05, ** <0.01, *** <0.001.

Table A4. Summaries of multiple regression model of Shannon’s diversity for oribatid mites in the
oil sands region of Alberta, Canada.

Coefficient Standard Standardized Standard

Error Coefficient Error

Energy Footprint
Mines −0.716 0.380 −0.139 0.074
Well sites −0.477 0.760 −0.021 0.034
Seismic 1.398 0.608 0.088 0.038 *
Pipeline/Transmission Lines 0.764 0.398 0.119 0.062

Other Human Footprint
Urban/Industrial −0.355 0.367 −0.076 0.078
Road/Rail Verges and Trails −0.634 0.685 −0.044 0.048
Forest Harvest 0.807 0.354 0.356 0.156 *
Cultivation −0.538 0.358 −0.195 0.130
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Table A4. Cont.

Coefficient Standard Standardized Standard

Error Coefficient Error

Natural Land Cover
Bog 1.085 0.349 0.569 0.183 **
Deciduous 0.821 0.350 0.420 0.179 *
Fen 1.065 0.354 0.469 0.156 **
Grass/Shrub 1.439 0.442 0.158 0.049 **
Mixedwood 1.022 0.366 0.249 0.089 **
Pine 0.775 0.355 0.278 0.128 *
Swamp 0.857 0.360 0.271 0.114 *
White spruce 1.035 0.374 0.235 0.085 **

Climate
Frost Free Period 0.007 0.004 0.075 0.049
Mean Annual Precipitation −0.001 0.001 −0.025 0.047
Potential Evapotranspiration 0.000 0.001 0.003 0.053

Space
Latitude −0.009 0.038 −0.015 0.062
Longitude 0.026 0.011 0.086 0.037 *

Significant relationships shown in bold: * <0.05, ** <0.01, *** <0.001.

Table A5. Permutational Multivariate Analysis of Variance (PERMANOVA) results showing the
significance for each natural land cover, human footprint, space, and climate variable on differences
in community structure of oribatid mites for 583 site-level collection events within the oil sands
region of Alberta, Canada. The total variance explained by the model was 24.5% (Pr (>F) = 0.001).

Df Sum of Sqs R2 F Pr (>F)

Energy Footprint
Mines 1 1.604 0.008 5.717 0.001 ***
Well sites 1 0.410 0.002 1.462 0.080
Seismic 1 0.380 0.002 1.354 0.116
Pipeline/Transmission Lines 1 1.049 0.005 3.737 0.001 ***

Other Human Footprint
Urban/Industrial 1 1.292 0.006 4.603 0.001 ***
Road/Rail Verges and Trails 1 1.083 0.005 3.859 0.001 ***
Forest Harvest 1 6.713 0.032 23.920 0.001 ***
Cultivation 1 7.534 0.036 26.847 0.001 ***

Natural Land Cover
Bog 1 6.531 0.031 23.271 0.001 ***
Deciduous 1 9.256 0.044 32.982 0.001 ***
Fen 1 2.335 0.011 8.319 0.001 ***
Grass/Shrub 1 0.473 0.002 1.685 0.025 *
Mixedwood 1 0.400 0.002 1.426 0.094
Pine 1 2.651 0.013 9.445 0.001 ***
Swamp 1 0.857 0.004 3.055 0.001 ***
White spruce 1 0.645 0.003 2.297 0.003 **

Climate
Frost Free Period 1 3.147 0.015 11.213 0.001 ***
Mean Annual Precipitation 1 1.066 0.005 3.797 0.001 ***
Potential Evapotranspiration 1 1.362 0.007 4.852 0.001 ***

Space
Latitude 1 0.778 0.004 2.774 0.003 **
Longitude 1 1.519 0.007 5.414 0.001 ***

Significant relationships shown in bold: * <0.05, ** <0.01, *** <0.001.
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Table A6. Variance partitioning of the mite assemblage RDA by three explanatory variables: natural
land cover (NLC), human footprint (HF), and climate–space (CS).

Df R2 Adj.R2

NLC 8 0.131 0.118
HF 9 0.070 0.055
CS 5 0.064 0.056
NLC + HF 17 0.173 0.148
NLC + CS 13 0.165 0.146
HF + CS 14 0.126 0.105
NLC + HF + CS 22 0.209 0.178
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